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Three Functional Equations

Problem Statements

1. Is there a function f : Z→ Z such that f (f (z)) = z+ 2023

for all z ∈ Z?

2. Is there a function f : Z→ Z such that f (f (z)) = z+ 2024

for all z ∈ Z?

3. For a fixed integer k, is there a function f : Z → Z such

that f (f (z)) = z + k for all z ∈ Z?

Based on Q4 from 1987 International Maths Olympiad (La Ha-

bana, Cuba)

Problem 2 is Easy but Problem 1 is Hard

It is easy to find a solution to f (f (z)) = z + 2024. We can set

f (z) = z + 1012.

This trick does not work for question 1, because 2023 is an odd

number. The function f (z) = z + 10111
2 is not a solution because

of the requirement that f : Z → Z, that is, f maps the integers

to the integers.

There is no Solution with k = 1

Suppose there is a function f : Z→ Z with f (f (x)) = x+ 1 and

derive a contradiction.
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Consider the sequence 0, f (0), f (f (0)), f (f (f (0))) and so on,

starting at zero and applying f repeatedly. This set is called the

forward orbit of 0 under f .

From the functional equation, this sequence must look like 0,

a, 1, a + 1, 2, a + 2 etc.

We cannot have f (0) = 0 because that would contradict f (f (0)) =

0. Likewise, we cannot have f (0) = 1 because the functional equa-

tion would force f (1) = f (f (0)) = 1, contradicting f (f (1)) = 2.

To illustrate the case f (0) > 1 let us suppose f (0) = 3. Then

the forward orbit of 0 must appear as below:
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8

0 1 2 3 4 5 6 7 8 9 10

The number 3 appears twice in the orbit; the first time we have
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f (3) = 2 and the second time f (3) = 6; a contradiction. We call

this the clash argument for this problem.

To illustrate the case f (0) < 0, suppose f (0) = −3. Then the

forward orbit of 0 must appear as below:
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Here we have a contradiction because 0 appears twice (another

clash), implying f (0) = −3 and f (0) = 7 which cannot both be

true as f is a function.

Exercise: Develop these observations based on a = ±3 into

a general contradiction for all values of a ∈ Z.

Hints for a Solution: Inductively show that for k ∈ Z+
0 :
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f 2k(0) = k

f 2k+1(0) = k + a

In the case a > 1, we have:

f (0) = a = f 2a(0)

Taking f of each side we have:

1 = f 2(0) = f 2a+1(0) = 2a

This is a contradiction. A similar argument applies when a < 0.

Sets and Set Operations

A set is a collection of elements. When we list the elements to

define a set, we enclose them in curly brackets.

Finite Sets

P Provinces of Ireland { Connacht, Leinster, Munster, Ulster }
L Counties of Leinster { Carlow, Dublin, Kildare, Kilkenny,

Laois, Longford, Louth, Meath,

Offally, Westmeath, Wexford, Wicklow }
U Counties of Ulster { Antrim, Armagh, Cavan, Donegal

Down, Fermanagh, Derry, Monaghan,

Tyrone }
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The number of elements in a finite set (also called its cardi-

nality) is denoted by vertical bars, so |P | = 4, |L| = 12, |U | = 9.

.

Elements

The order of elements in a set does not matter. Two sets are equal

if they have exactly the same elements.

We use the symbol ∈ for elements so that, for example Carlow

∈ L but Carlow /∈ U . We sometimes write this in reverse order,

meaning contains, so L 3 Carlow.

It is OK for one set to be an element of another set, for example

we can think of the provinces Connacht, Leinster, Munster, Ulster

each to be a set of counties, and also each of which is an element

of P .

It is not OK for a set to be a member of itself. We have to

rule this out to dodge Russell’s paradox: consider the set of all

sets that are not members of themselves. Is that set a member of

itself, or not?

Unions, Intersections, Subsets

For two sets L and U , the union L ∪ U means all elements that

are in one set or the other (or both). Repeated elements are not

counted twice. If L is the counties of Leinster and U is the counties

of Ulster than L ∪ U is all the counties in Leinster or Ulster.

For two sets L and U , the intersection, L ∩ U is the set of
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elements that are in both L and U . With our example, L∩U = ∅,
the empty set, because there are no counties in both Leinster and

Ulster. If two sets have no common elements, we say they are

disjoint. A union of two or more sets is a disjoint union if the

intersection of any two sets is empty.

For general finite sets A and B we have:

|A ∪B| = |A| + |B| − |A ∩B|

For a disjoint union, |A ∩ B| = 0 and so the cardinality of the

union is the union of the cardinalities.

A set A is a subset of B if every element of A is also an element

of B and we write A ⊆ B. The empty set is a subset of every set.

A set A is a proper subset of B, written A ⊂ B if A ⊆ B but

A 6= B, ie there is at least one element of B that is not an element

of A. The empty set ∅ is a proper subset of any non-empty set.

For two sets A and B, the set difference A\B is all elements

of A that are not in B.

Sets of Numbers

Addition and multiplication do not have to be defined for elements

of a set. There is no mathematical meaning to Carlow × Dublin,

and we do not have to invent one to have a set of Counties in

Leinster. But if our set is a set of numbers then we can define

addition and multiplication.

Here are some examples of sets of numbers:
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Positive integers Z+

Integers Z
Rational numbers Q
Real numbers R
Irrational numbers R\Q
Complex numbers C

We write sub-intervals of the real line with square brackets

or round brackets indicating whether the endpoints are included.

Assuming a ≤ b, we write:

[a, b] = {x ∈ R : a ≤ x ≤ b} closed interval

[a, b) = {x ∈ R : a ≤ x < b}
(a, b] = {x ∈ R : a < x ≤ b}
(a, b) = {x ∈ R : a < x < b} open interval

Functions

Function Definitions

Let A and B be two sets. A function f is a map such that every

element a ∈ A is associated with an image f (a) ∈ B.

The set A is called the domain of the function and B is called

the co-domain of the function.

Two functions f and g are equal if they have the same domain,

the same co-domain and their values are the same for all elements

of the domain.
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Example: The functions f : R → R and g : R → [0,∞)

defined by f (x) = x2 and g(x) = x2 are different functions because

the co-domains are different.

Example: The map y : [0,∞) → R given by y = ±
√
x is

not a function, because each value of x > 0 gives rise to two (not

one) values of x.

Identity, Indicator, Inclusion and Restrictions

The emphidentity function ι : A → A is the the function that

maps every element of A to itself. We also use the notation ι for

inclusion maps (see below).

If A ⊇ C, then the indicator function of C, written 1C : A→
{0, 1} is a function defined by:

1C(x) =

{
1 x ∈ C
0 x /∈ C

If C ⊆ A then there is an inclusion map ι : C → A defined

by ι(c) = c for c ∈ C. Sometimes we write ι : C ↪→ A, where the

hooked arrow reminds is this is an inclusion.

If C ⊂ A then any function f : A → B induces a function

f �C : C → B which agrees with f for elements of C. In that

case, f �C is said to be a restriction of f , while f is said to be an

extension of f �C .
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Surjection, Injection

The image of the function, written f (A) is the set {f (a) : a ∈ A}.
If f : A→ B and f (A) = B then we say f is surjective, because

it covers all the elements of B (from French: sur = on).

Mathematicians sometimes talk about the range of a function.

That might mean the co-domain of the function, or the image of

the function. If the function is not surjective, these are different

concepts, so it is wise to avoid the term range.
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We say a function f : A→ B is injective if f (x) = f (y) =⇒
x = y, so that no two elements of A map onto the same element

of B.

A function f is bijective if it is surjective and injective.

Exercise: Suppose f : Z → Z and, for some fixed k ∈ Z
we have f (f (z)) = z + k for all z ∈ Z. Can we deduce that f is

surjective or injective?

Solution: The function f is surjective because for any z ∈ Z
we have f (f (z − k)) = z so that f maps f (z − k) onto z.

The function f is injective because

f (x) = f (y) =⇒ f (f (x)) = f (f (y)) =⇒ x+k = y+k =⇒ x = y

If follows that any such f must be bijective, as it is injective and

surjective.

Composition

Let A, B, C be sets and suppose we have functions f : A → B

and g : B → C.

The function composition g ◦ f : A→ C is defined by:

g ◦ f (x) = g(f (x));x ∈ A

For composition to make sense (to be well-defined), it is neces-

sary that the domain of g is the co-domain of f . Unlike addition

and (for members of a field) multiplication, the composition of

functions is not commutative. It is not that case that f ◦g = g◦f .

Indeed, it is possible that f ◦ g is well-defined but g ◦ f is not.
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Exercise: Why is composition of functions associative?

Exercise: Is the composition of two injections an injection?

Is the composition of two surjections a surjection? Justify your

answers.

Exercise: Construct an example of two functions f and g

where f ◦ g and g ◦ f are both well-defined but are not the same

function.

Left and Right Inverses

Suppose f : A→ B. We want to define what we mean by applying

f in reverse.

Suppose we can find a function g that answers the question:

given f (a) determine a unique value of a ∈ A. For this to be

possible, f must be injective. Such a g is called a left inverse

of f . We need to define g on all of B but we do not care about

the values for B\f (A). Equivalently, g is a left inverse of f if

g ◦ f : A→ A is the identity function.

Suppose instead we can find a function g that answers the

question: given arbitrary binB find any value of a ∈ A so that

f (a) = b. This can only work if f is a surjection. Then we say g is

a right inverse of f . In symbols, this means that f ◦ g : B → B

is the identity function.

We can see that g is a right inverse of f if, and only if, f is a

right inverse of g.

We say that g is the inverse of f if it is a right inverse and a

left inverse. In that case, we write g = f−1.
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Exercise: Can you construct an example of f and g where

g is a right inverse of f but not a left inverse? Hint: think of an

example where |B| < |A|.
A function f : A → B has an inverse, f−1 : B → A if and

only if f is bijective.

A function f : A → a has a fixed point if for some a ∈ A

we have f (a) = a. Every point is a fixed point of the identity

function.

A function f : A → A is self-inverse if f (f (x)) = x for all

x ∈ A. An example of a self-inverse function in a number set is

f (x) = −x.

Example: The function f : R → R given by f (x) = x2 is

neither bijective nor surjective, so it has neither a right inverse nor

a left inverse.

Iterated Composition and Orbits

If f : A → A and n ∈ Z+ then we can define the iterated

composition fn which means applying f , n times.

By convention, f 0 means the identity.

The forward orbit of an element a ∈ A is the set {f k(a) : k ∈
Z+
0 }. The forward orbit is not necessarily an infinite set as the

iterates of f may loop into a cycle.

If f is bijective than we can also define f−1 and so fn for

n ∈ Z−.

For bijective f , the backward orbit of a is the set {f k(a) : k ∈
Z−0 }.
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The orbit of a is the union of the forward and backward orbits,

that is {f k(a) : k ∈ Z}.
If a function is self-inverse then all its orbits must either be

singletons (fixed points) or pairs of two elements. For example,

the orbits of the function f (x) = −x are the sets ±x, all of which

have two elements except for ±0 which has a single element.

Nasty and Nice Functions

Mathematicians might classify some functions as nice, meaning

they are well-behaved in some sense.

For example, a function f : R→ R might be continuous, or it

might not. A continuous function, intuitively, is one whose graph

we can draw without taking the pencil off the paper.

A function defined by different formulas on different intervals

is said to be defined piecewise. Consider for example the absolute

value function defined as:

|x| =
{
−x x ≤ 0

x x ≥ 0

If a piecewise function is multiply defined at interval endpoints,

then those definitions should agree (as in the example above). This

is an example of a (single) continuous function defined piecewise,

not an example of two functions.

f (x) = x2 and g(x) = |x| are continuous functions. An ex-

ample of a discontinuous function is the Heaviside function H(x)
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defined by:

H(x) = 1[0,∞)(x) =

{
0 x < 0

1 x ≥ 0

There are nasty functions that are discontinuous everywhere,

such as the indicator function of the rational numbers as a subset

of the real numbers.

Products and Powers of Sets

Cartesian Products

Let A and B be two sets. Then the Cartesian product, written

A×B is the set of all ordered pairs (a, b) with a ∈ A and b ∈ B.

Explain why:

|A×B| = |A| × |B|

We write A2 for A× A and A3 for A× A× A and so on.

Graph of a Function

The graph of a function f : A→ B is the subset of A×B defined

by:

{(a, b) ∈ A×B : b = f (a)}
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Sets of Functions

We write AB for the set of all functions f : B → A. This is

consistent with the notation A2, A3 etc. by identifying 2 with any

set containing 2 elements and so on.

Explain why ∣∣AB
∣∣ = |A||B|

Equivalence Relations and Quotient
Sets

Equivalence Relation Definition

An equivalence relation, written ≡ (or sometimes ∼ ), is a binary

relation between elements of a set A such that:

Reflexive a ≡ a

Symmetric If a ≡ b then b ≡ a

Transitive If a ≡ b and b ≡ c then a ≡ c

For any element a ∈ A, the equivalence class containing a,

written [a], is the set:

[a] = {b ∈ A : b ≡ a}

Geometric Examples

Consider the set of all triangles in the plane.
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Congruence as in equivalence relation. Congruent triangles

are triangles with the same edge lengths. The set of all triangles

congruent to a particular triangle form an equivalence class.

So is similarity. Similar triangles are triangles with the same

angles.

Last-Digit Arithmetic

For two non-negative integers, say that a ≡ b if the final digits of

a and b are the same.

There are ten equivalence classes, one for each possible final

digit (including 0).

Modular Arithmetic

Let n ∈ Z+.

We say a ≡ b (mod n) if n | (a− b).
The set of equivalence classes is called the integers mod n and

is written Zn. This is a finite set with |Zn| = n.

Equivalence Classes from Iterated Bijections

Let A be a set and left f : A→ A be a bijection.

Say that a ≡ b if b = f k(a) for some k ∈ Z.

The equivalence classes are the orbits under f .
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Sets of Equivalence Classes

Suppose A is a set with an equivalence relation ≡.

Define the quotient set A/ ≡ to be the set of equivalence

classes. We call this set A modulo ≡. We have seen examples:

integers mod n, orbits under a bijection, triangles regarded as the

same if congruent.

Cardinal Numbers

Consider a collection of sets.

Say that two sets A and B are equivalent if there is bijection

from A to B.

Exercise: verify that the existence of a bijection is an equiva-

lence relation on a class of sets. To prove transitivity, use function

composition.

Exercise: Let A and B be finite sets. Show that there exists

a bjiection from A to B if and only if A and B have the same

number of elements.

The equivalence classes of sets under bijection existence are

called the cardinal numbers. These include the natural numbers

(for finite sets), but also the cardinalities of infinite sets.

For example, ℵ0 is the cardinality of the natural numbers,

which is also the cardinality of the integers, and of the rationals,

and of any rational interval.

Exercise: Can you construct a bijection from Z+ to the in-

terval [0, 1]? Hint: think of Farey sequences.
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We use ℵ1 for the cardinality of the reals, which is also the

cardinality of any real interval and of the complex numbers.

Functions from Equivalence Classes

Suppose we have a function f : A→ B and that ≡ is an equiva-

lence relation on A.

Suppose also that f (x) = f (y) whenever x ≡ y. Then we can

define an induced function:

≡
f : A/ ≡→ B

by
≡
f [a] = f (a)

Example: Area of triangles modulo equivalence.

Example: Largest angle of triangles modulo similarity.

Non-example: Area of triangles modulo similarity.

Binary Operations for Equivalence Classes

We know that if we take two positive integers, one ending in 3 and

the other ending in 6, then the sum must end in 9 and the product

must end in 8.

We can define a new sort of addition and multiplication be-

tween the digits 0 to 9, based on the last digit. We call this

arithmetic modulo 10. We can define Z10 as the set of last digits

with that multiplication.

19



We can define modular arithmetic for a general number base

n ∈ Z+.

Suppose that a, b, c, d ∈ Z.

Suppose also a ≡ c (mod n) and b ≡ d (mod n).

Explain why a+b ≡ c+d (mod n) and a×b ≡ c×d (mod n).

This allows us to define operators + and × on Zn.

If n is composite, then there are a, b 6= [0] ∈ Zn such that

a× b = [0]. Therefore Zn is not a field. As a result, it lacks some

important field properties. For example, over the set Z10, roots

of the quadratic polynomial x2−x represent numbers whose final

digit is unchanged on squaring. The polynomial x2 − x has has 4

roots in Z10, namely [0], [1], [5] and [6].

Over a field, a quadratic polynomial could have at most 2 roots.

For example if n is prime than the only roots of x2−x = 0 are [0]

and [1], because (Euclid’s lemma) if p | x(x− 1) then either p | x
or p | x − 1. Indeed, it turns out (not obvious) that Zn is a field

if and only if n is a prime number. However, not all finite fields

arise in this way; we have already seen a field F9 which is not the

same as the (non-field) Z9.

Back to Problem 3

Now let us try to solve the original functional equation f (f (z)) =

z + k for all z ∈ Z, where k ∈ Z+.
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Three-Fold Iteration

The key to constructing the clash argument was getting two se-

quences of integers, increasing 1 at a time, that had to clash at

some point.

In general we get sequences increasing k at a time, as:

f (z + k) = f (f (f (z)) = f (z) + k

That implies inductively that for arbitrary n ∈ Z+:

f (z + nk) = f (z) + nk

As f is bijective, we can extend that equation to all n ∈ Z.

Reduction to Zk
The equation f (z+nk) = f (z)+nk implies that if y ≡ z (mod k)

then f (y) ≡ f (z) (mod k), as y must have the form of z + nk.

This congruence means we can define a function
≡
f : Zk → Zk

by:

≡
f ([z]) = [f (z)]

where [x] is the equivalence class of z (mod k). This will help

because Zk is a finite set, so we can use counting arguments on it.

This function
≡
f also has the property of being self-inverse, as

f (f (z)) = z + k ≡ z (mod k).

As
≡
f is self-inverse, all its orbits are either singletons or pairs.
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Finding a Clash Argument when k is Odd

Now suppose k is odd. Then Zk has an odd number of elements

and is a disjoint union of orbits under
≡
f . As

≡
f : Zk → Zk is

self-inverse, all its orbits are singletons or pairs.

Not all the orbits can be pairs because Zk has an odd number

of elements. So there is at least one fixed point, let’s say [w] ∈ Zk
for which:

f (w) ≡ w (mod k)

Then we must be able to write f (w) = w + ak for some specific

a.

Now we are in a position to construct a clash argument. We

have for any n ∈ Z:

f (w + nk) = f (w) + nk = w + (n + a)k

for all n. So, replacing the general n by the specific a:

f (f (w)) = f (w + ak) = w + 2ak = w + k

This is the clash; as there is no integer a with 2a = 1 we have the

contradiction and so there is no such function f .

Remark: It is entirely feasible to show the impossibility of

f (f (z)) = z+2023 without using the language of equivalence rela-

tions, congruence, quotient sets, self-inverse functions and orbits.

But all known solutions to this problem involve either building on

these concepts, or reinventing them from scratch.
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Glossary

After today’s lectures you should be able to define and apply the

following terms:

Solution set Domain, co-domain

Polynomial, monic polynomial Unions, intersections

Associative operation Cardinality, disjoint

Commutative operation Open and closed intervals

Distributive law Injection, surjection, bijection

Field Function composition

Integers, Rationals, Reals Left and Right inverses

Farey sequence Product sets, graphs

Rational root, irrational root Forward and backward orbits

Complex numbers Fixed point

Primes, composites, factors Equivalence relation

Unique factorisation Equivalence class

Greatest common divisor Quotient set

Relatively prime Integers Zn mod n

Linear equation Cardinal number

Quadratic equation

Intermediate value

Fund. Theorem of Algebra

Algebraic completeness
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